

reFuel.ch project
The Oman Case

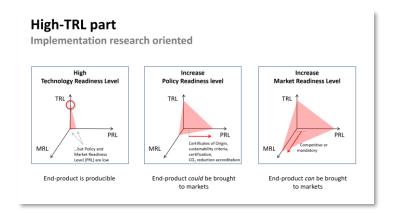
Christian Bach

Co-coordinator reFuel.ch project; Head of Chemical Energy Carriers and Vehicle Systems Laboratory at Empa

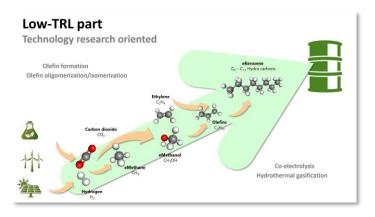
# **SWEET** project "reFuel.ch"



• Task: Development of robust supply paths for sustainable fuels to Switzerland


Consortium: 15 Research groups in 9 Swiss universities and Research institutes +

R&D department of one industry company


Approach: Implementation oriented «high-TRL» and technology oriented «low-TRL» task

with investigating implementation in a Swiss-Case, a European Case in Span and

an Extra-European Case in Oman



Increase of policy and market readiness level



New, more efficient technologies

# **Agenda**



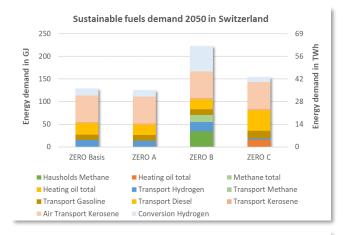
- 1. Situation in Switzerland (energy demand)
- 2. Situation in Oman (energy production potential)
- 3. Delegated EU directives regarding sustainable fuels
- 4. Upscaling of an RED-III ready approach

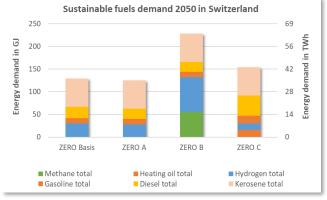
## 1. Situation in Switzerland

sweet swiss energy research for the energy transition

 Demand of sustainable fuels in 2050 is estimated to be between 110 – 220 GJ or 30 – 60 TWh/a, depending on the different scenarios.

ZERO Basis: extensive electrification


ZERO A: more extensive electrification


ZERO B: use of renewable gases (PtH<sub>2</sub>/PtG)

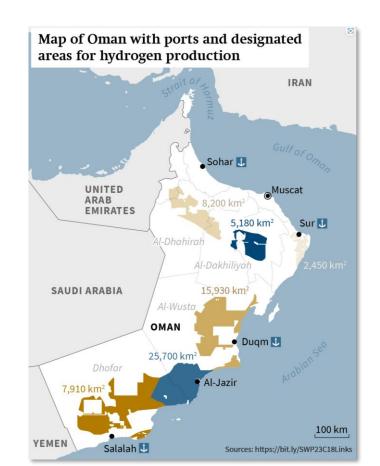
ZERO C: use of renewable liquids (PtL)

Source: SFOE, Energy perspectives 2050+

- It is expected, that >90% thereof has to be imported.
- One main target of the reFuel.ch project is to develop robust supply pathways for sustainable fuels to Switzerland.






## 2. Situation in Oman



- Oman has designated 50'000 km<sup>2</sup> of desert land for H<sub>2</sub> and derivates production (rated among the top 10 areas on earth regarding solar radiation and wind).
- Oman aims to produce 1 Mt<sub>H2</sub>/a by 2030, 3.75 Mt<sub>H2</sub>/a by 2040 and up to 8.5 Mt<sub>H2</sub>/a by 2050. The 2040 hydrogen target would represent 80% of Oman's current LNG exports in energy-equivalent terms.
- In deserts one may produce 100 120 GWh<sub>el</sub>/km<sup>2</sup><sub>Land</sub>/a<sup>1)</sup> by PV. To achieve the 8.5 Mt<sub>H2</sub>/a aim of Oman, a PV equipped land demand of 4'500 5'500 km<sup>2</sup> would result.

<sup>1)</sup>Solar Power Spatial Planning Techniques (irena.org)

• The 50'000 km² of desert land for H₂ production is split in 145 sub-areas, which are made available by tenders. First tenders have already been issued and have been awarded to a consortium of bidders. The first one is the AMNAH consortium led by Mark Geilenkirchen, who joined the reFuel.ch Oman Case Idea Consortium.



# 3. EU directives regarding sustainable fuels



## Main requirements (according to EU):

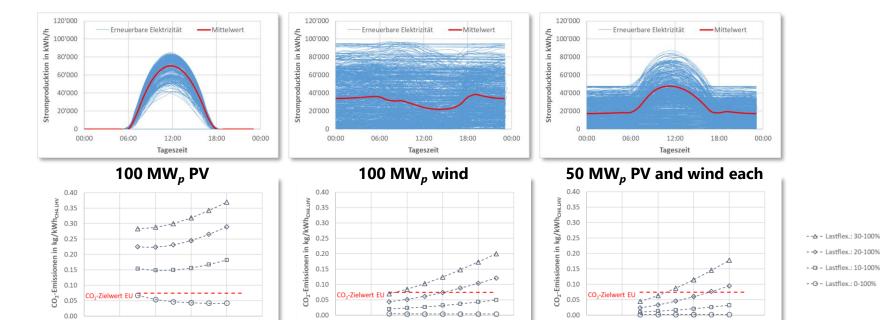
- Additionality of renewable energy
   The electricity must be generated by new
- Direct coupling with renewable electricity production

power production systems (max. 3 years old)

The PtX plant has to be directly coupled to the renewable electricity power plant or – in case of grid supply – has to follow the electricity production profile.

- CO<sub>2</sub> supply after 2035 by Direct Air Capture
  - Permitted carbon sources for the production of synthetic fuels
  - Direct air capture
  - Biogenic CO₂
- 70% of CO<sub>2</sub> reduction in whole path




# 3. EU directives regarding sustainable fuels

100'000

Elektrolysekapazität in kW



Direct coupling of PtX plant with PV, wind or PV/wind is demanding a high load flexibility of the entire PtX system (PV only: 100 – 0%; Wind only: 100 – 10%; PV/wind combined: 100-20%)



Elektrolysekapazität in kW

Elektrolysekapazität in kW

# 4. Development/upscaling RED-III ready approach



Target: supply costs of synth. methane at the boarder below 0.20 EUR/kWh<sub>HHV</sub> (Swiss biogas as reference) assuming liquefaction, regasification, transport and trade costs at 0.05 - 0.06 EUR/kWh

#### Investment (including system integration)

## Step 1

RED III-ready Large scale RTTP plant 2026/27

12 MEUR PV

25 MEUR Elv

MFUR Meth

MEUR DAC1) 1) 50% of DAC for Step 1 and Step 2 (resulting in 750 EUR/t<sub>CO2</sub>)

93 MEUR



#### Production costs and quantity

8.0 MEUR/a CAPEX

1.0 MEUR/a OPEX

19 GWh/a eMethane

(0.60 EUR/kWh (incl. CAPEX))

0.17 EUR/kWh (w/o CAPEX)

### Approach

Hardware sponsored

#### Investment (including system integration)

## Step 2

**RED III-ready** "small" large scale plant 2031/32

48 MEUR PV 92 MEUR Ely

MEUR Meth

MEUR DAC1) 1) 50% of DAC for Step 1 and Step 2 (resulting in 750 EUR/toos)

202 MEUR

## 173 GWh<sub>ol</sub>/a (1.7 km<sup>2</sup> Land); 24 kt H<sub>2</sub>O/a; 15 ktCO<sub>2</sub>/a 100 MW<sub>el.p</sub> PtX Psh.: 51 MWal; 2'000 Full-load h/a

Electricity: 20 EUR/MWh; H2: 4.0 EUR/kg

#### Production costs and quantity

14.4 MEUR/a CAPEX

3.5 MEUR/a OPEX

77 GWh/a eMethane

0.23 EUR/kWh (incl. CAPEX)

### Additional costs accepted by

market actors

#### Investment (including system integration)

## Step 3

RED III readv "large" large scale plant 2036/37

740 MEUR PV

675 MEUR Ely

125 MEUR Meth

750 MEUR DAC resulting in 300 EUR/t<sub>CO2</sub>) 2'290 MEUR

### 3'400 GWh<sub>el</sub>/a (34 km<sup>2</sup>); 500 kt H<sub>2</sub>O/a; 300 ktCO<sub>2</sub>/a $2 \, \text{GW}_{\text{el},n} \, \text{PtX}$ P<sub>sh</sub>: 1'100 MW<sub>al</sub>; 2'100 Full-load h/a Electricity: 13 EUR/MWh; H2: 2.1 EUR/kg



#### Production costs and quantity

196 MEUR/a CAPEX

44 MEUR/a OPEX 1'700 GWh/a eMethane

0.14 EUR/kWh (incl. CAPEX)

Market transformation

# 4. Idea ("RED III ready" demonstrator at Empa)





Future Mobility Demonstrator «move»

battery-electric hydrogen synthetic fuels



PV coupled system

Flexible thin-film based PV



Battery buffer storage

Molten-salt battery storage system



Onsite hydrogen production

PEM electrolyser and hydrogen storage system



Atmospheric CO<sub>2</sub> supply (DAC)

Coupled over waste heat recovery system with electrolyser



Sorption enhanced methanation

Load flexible approach (demonstrator under construction)

# Thank you for your attention



Contact:

Christian.bach@empa.ch